
1

When you think of Linux you think of open collaboration, fast paced innovation, agility and

capability that empowers developers and operators.

When you think of IBM Big Iron, you think of the qualities of service that have defined 5

decades of un-matched resilience, security, dynamic resource allocation, industry leading

data serving and scalable transaction processing.

2

On Aug 2015 we took Linux on z to the next level - we announced IBM

LinuxONE. LinuxONE brings together a broad set of new capabilities

such as a KVM hypervisor, Ubuntu -- cloud-enabled distribution, and an

extreme expansion of the eco-system to include significant set of open

source capabilities.

LinuxONE introduces new elastic pricing which represents a new cloud-

based pricing model – essentially moving from a capital expenditure to

an operational expenditure pricing model.

We introduced the new LinuxONE Community Cloud to enable open

communities and open innovation on LinuxONE.

We also worked with the Linux Foundation to start up the Open

Mainframe Project which brings together academics, industry players

and others to help drive open innovation and collaboration, bringing the

best of the mainframe innovation to open communities, while also

3

bringing mind-share for the mainframe in open communities.

LinuxONE combines the power of open innovation with enterprise

qualities of service to take Linux to the next level.

3

• Canonical delivers Ubuntu 16.04 support on LinuxONE and IBM z Systems the perfect

platform for Hybrid Cloud

• Canonical’s Ubuntu provides more flexibility and choice with continued open ecosystem

expansion

• Ubuntu allows developers who use Ubuntu on other systems to work in a familiar

environment

• Allows CSPs and clients with applications built on Ubuntu to easily extend their

environments to include LinuxONE and z Systems

• Lets customers get the performance, scale, reliability and security they need for Linux to

run their business, using the tools they know, while getting the same economics they are

use to

6

7

Solr is a search engine, used my many web sites to search for terms in a

document base

Use case

Greater business agility and lower costs by simplifying IT operations, enabling an

organization to go to market quickly and solve business problems effectively.

DevOps agility with Docker containers and microservices.

Hybrid Cloud and Choice Require Portability:

Cross Cloud Deployment – move the same application across multiple clouds

Eliminate “lock-in”, become a “Cloud Broker”

Key Messages

Strong I/O subsystem on z13 enables a server to host a large number of containers

that generate heavy file accesses.

Superior I/O performance of z means more efficient paging translating to 1.5x better

Docker density within a fixed core and memory footprint.

Benchmark

Apache Solr search queries driven by Apache Jmeter

System Stack

z13: Native LPAR on 16 CPU cores with 128G memory

E5-2699 v3: Native Linux on 16 CPU cores with 128G memory

SW: Apache Solr v4.10.0, WebSphere Liberty v8.5.5.2, IBM Java 1.7.0 SR1, Docker 1.6.2

w/ btrfs storage backend, RHEL 7.1

8

9

10

12

NoSQL databases on LinuxOne performs 2x faster than other platforms. Compression

hardware to save Spark Resilient Distributed Datasets runs 4.9x faster than other platforms

and persists Docker containers 4x faster. LinuxOne can encrypt all the data 28x faster than

other platforms. Node.js runs up to 2x faster. Spark Analytics runs up to 3x faster. Who

wants to deal with sharded databases when you have a server that can handle TB

databases, with over 2 billion documents and 470,000 read/writes per second. And

remember all this speed and scalability is for just one LinuxOne server, you can cluster

them to scale out as well to have even more scalability. This is a demo that combined

unstructured data (tweets and news) with structured data, using real time analytics to

provide insight. This demo was developed by 2 people in 4 weeks. They developed the

code on their favorite Linux desktops and laptops and deployed it on LinuxOne for the

performance and power. Think what you can do with a LinuxOne server!

On average, AcmeAir transaction translates to 1.36x MongoDB operations (Insert, Query,

Update, Delete). 460k r/w per sec was based on a fully saturated z13 Hartmut measured,

with many instances of both AcmeAir and Mongo. The 27k for the 1TB system is simply

based on 16 AcmeAir instances targetting 1 MongoDB instance (with lots of data).

z13 seemless scale up to 350k transaction per sec leading to a 30B proof-point. Workload

scales up ˜6x higher (thruput) than an alternaJve server.

460k number was a the outcome of the work done by Hartmut to load the machine to

drive

13

max throughput/box by having many instances of Node/Mongo running

Encryption 28x faster – but for secure key, not for this demo

13

Node.js scales nicely in Docker containers

z Systems Connectivity
Co-locate Node.js applications for reduced latency accessing z/OS data/services
Up to 2x better throughput, 60% faster response time to DB2 on z/OS*

Security and Dependability
Leverages the trusted environments of z Systems to maximize security and uptime of critical Node.js applications.

Unified Diagnostics Tooling with IBM SDKs v1.2 for Java®

Monitor your application with IBM HealthCenter
Debug your application using Interactive Diagnostic Data Explorer

The IBM SDK for Node.js ™ provides a stand-alone JavaScript ® runtime and server-side JavaScript solution for IBM platforms. It provides a high-performance, highly scalable, event-driven environment with non-blocking

I/O that is programmed with the familiar JavaScript programming language. The IBM SDK for Node.js ™ is based on the Node.js ™ open source project. It provides a compatible solution for IBM System Z products that

require Node.js ™ functionality and package management.

Node.js has one of the fastest growing eco-systems out there. More than +93k javascript modules can be quickly and easily downloaded from npmjs.org to build complex and sophisticated javascript applications with

ease and speed.

According to http://www.modulecounts.com, Node.js was the fastest growing eco-system amongst languages – the rate of modules contributed was around 3x that of any other language in August, 2014.

Acme is a different benchmark than the one we measured 63% on in the chart, that one is a web-serving benchmark. Acme is an airline reservation system.

acme airlines is a Node.js benchmark that a (now ex-) IBMer wrote http://ispyker.blogspot.ca/2013/05/announcing-acme-air-performance.html, We ran it on Intel and zEC12. It was 29% faster on the latter.

AcmeAir Benchmark (https://github.com/acmeair/acmeair) shows an implementation of a fictitious airline called "Acme Air". The application was built with the some key business requirements: the ability to scale to

billions of web API calls per day, the need to develop and deploy the application in public clouds (as opposed to dedicated pre-allocated infrastructure), and the need to support multiple channels for user interaction

(with mobile enablement first and browser/Web 2.0 second).

The AcmeAir benchmark was installed and measured:

Intel Xeon E5-2670 @ 2.60 GHz using the 32-bit Joyent 0.10.30 Node.js

IBM zEnterprise EC12 using the 31-bit IBM SDK for Node.js V1.1

Server side scripting

-Scripting to next level, write MW in script language

-Cloud foundry written in Ruby, so no longer use scripting lang to shift files but use them for more interesting tasks

-For node, used for web serving, web pg serving, data processing

-No differ betw java and java script

-Server side: SW being used to run on a server, so this is why perf is critical cause servers are expensive, so people pay attention to perf, security, so need to build the IT infra, want to do more with less – do transaction

processing, data serving

-Lang that allows u to write apps so they run on servers as opposed to old way where scripts to automat something were on the client side. On the server side, say on bank app, goes to a server transaction with some

QoS e.g has to be secure, so bank processing billions a day – infra in place with HW, O/S and MW that runs on top of it e.g a resilient database like DB2, IMS, then surface it to the mobile app in a real way – so when build

app to run on server, the language is differ cause it biz logic for the app and the infra that runs this biz logic to manage that transaction envir

-Net is its goes from simple things to now more complex things

-Now enable yourself to do this on a server side

-In past scripting didn’t have to work all the time but in server envir has to work all the time, has to scale, be fast, be efficient – so scripting used to do something in a different way

The 2x perf is mainly due to the IO capability of the platform

Module counts - # modules in different repositories that cover differ languages, sharing libraries that you built that others can use

Support: we r building assets with intent to support, on a customer by cust baiss, then eventually have a PID in place to have a chargeable service

14

15

16

18

21

23

24

27

28

